lunes, 16 de febrero de 2009

CARbohidratos


Carbohidratos, lípidos y proteínas en el ciclo de los ácidos tricarboxílicos:
El principal alimentador en el ciclo de los
ácidos tricarboxílicos es el acetilo de la acetil coenzima A; sus dos carbonos se unen a un intermediario de 4 carbonos (oxalacetato) y forman uno de 6 (citrato); en una vuelta del ciclo se regenera el intermediario de 4 carbonos, listo para dar otra vuelta al ciclo si este es alimentado con mas acetilo. En una vuelta del ciclo se liberan 2CO2, 2H2O, un GTP y 4 pares de hidrógenos que entran a la cadena respiratoria. La acetil coenzima A provienen del metabolismo de los carbohidratos y los lípidos, y en menor proporción del metabolismo de las proteínas, las cuales, como aminoácidos, pueden alimentar el ciclo en sitios diferentes a los del acetilo.
Desde el punto de vista de las reacciones degradativas y de la obtención de energía, la conexión fundamental entre la glucólisis y el ciclo de krebs se establece a través de la descarboxilación oxidativa del piruvato y su conversión a CO2 y acetil coenzima A. La b oxidación de los ácidos grasos su conversión a CO2 y acetil coenzima A, incorporado al ciclo en forma directa A. Los aminoácidos glucogénicos se convierten en piruvato y este en acetil coenzima A. Otros aminoácidos se transforman en intermediarios del ciclo: el aspartato al desaminarse genera oxalacetato y el glutamanato, l – celoglutanato, única sustancia del ciclo con 5 carbonos.
Glucólisis:
Es la ruta central mediante la cual se extrae energía de los hidratos de
carbono. Se trata de una ruta formada por 10 pasos, que va de la glucosa al piruvato en las células con respiración. En los microorganismos anaerobios o en las células que representan un deterioro de la respiración, el piruvato sufre reacciones de reducción, con lo que el conjunto de la ruta puede cursar sin un cambio neto del estado de oxidación. La glucólisis puede contemplarse como un proceso que transcurre en dos fases; en primer lugar, una fase de inversión de energía, en la que utiliza ATP para sintetizar un azúcar fosfato de 6 carbonos que se desdobla en dos triosa fosfatos, y en segundo lugar, una fase de generación de energía, en la que la energía de los compuestos de súper – alta energía se utiliza para impulsar la síntesis de ATP a partir de ADP. La fofofructoguinasa y la piruvatoguinasa son los dos lugares principales de control de la ruta. Gran parte del control está en relación con loas necesidades energéticas de la célula, de tal manera, que las situaciones de baja carga energética estimulan la ruta y las situaciones de baja carga energética y las situaciones de abundancia energética retardan la ruta. Las reservas de polisacáridos intracelulares en los animales se movilizan bajo una cascada metabólica bajo control hormonal, en la que el A.M.P. cíclico transmite la señal hormonal y pone en marcha sucesos que activan la degradación del glucógeno a glucosa – 1 – fosfato.
Cuando aspartato o glutamato están implicados, los cetoácidos producidos son el L – citoglutanato y el oxalacetato, respectivamente, siendo ambos intermediarios del ciclo del ácido cítrico. En consecuencia, cada uno puede entrar al ciclo para completar su catabolismo. Sin embargo, nótese que cuando el ciclo comienza en cada uno de esos puntos, el funcionamiento continuado dependerá de la disponibilidad de suficiente acetil – SCOA para formar citrato.
Para ver el gráfico seleccione la opción "Descargar" del menú superior
Energía de la b - Oxidación::
Un
análisis ideal de la bioenergética del catabolismo de los ácidos grasos requiere la suposición de que el destino de la acetil – SCoA sería entrar al ciclo del ácido cítrico, donde sería oxidada completamente a CO2. la suposición no sería irreal. En realidad ese sería el caso cuando el estado fisiológico del organismo y / o factores dietéticos determinen que los lípidos, en lugar de los carbohidratos, sean utilizados como fuente de energía principal. Recuérdese además que las enzimas del ciclo ácido cítrico están también localizadas en las mitocondrias.
Una vez dentro de la mitocondria, los compuestos acil – SCoA se degradan a través de la acción de 4 enzimas. La
química de esta serie de reacciones es directa, y sigue los siguientes pasos:
Eliminación de hidrógeno (deshidrogenación) para producir una acil – SCoA a , b no saturada;
Hidratación para producir una b - hidroxiacil-SCoA;
Oxidación (deshidrogenación) para dar una b -cetoacil-SCoA;
Ruptura tiolítica para producir acetil-SCoA y un segundo acil-SCoA, acortado ahora en dos unidades de carbono; y
Recirculación de acil – SCoA acortado a través de los pasos desde (A) hasta(D)
Nótese, que aunque las etapas oxidativas (A) y (C) son catalizadas por deshidrogenasas, la primera es dependiente de PAD y la segunda de NAD+. Ambas etapas representan sitios de conservación de energía, que es finalmente utilizada en la formación de ATP. El acil-SCoA acortado podría ir luego a través de la misma secuencia de reacciones, generando una segunda unidad de acetil-SCoA y otro acil-SCoA acortado, el cual sería recirculado por otro paso. Este patrón cíclico de la b - oxidación continuaría a través de la formación del metabolismo b -ceto de cuatro carbonos, acetoacetil –
Para ver el gráfico seleccione la opción "Descargar" del menú superior
SCoA (CH3-C-CH2-C-SCoA). La ruptura teolítica de este
Para ver el gráfico seleccione la opción "Descargar" del menú superior
compuesto daría dos unidades de CH3-C-SCoA y, de esta manera, completaría el
proceso. Como se indica, siendo estearil – ScoA el compuesto inicial, el efecto global sería la conversión completa de nueve unidades de acetil – ScoA. Todas las enzimas han sido aisladas en forma pura. Nótese las estereoespecifidadedes de las enzimas que se aplaca tanto a la formación de producto como al sustrato preferido.

AGUA

A temperatura ambiente es líquida, inodora, insípida e incolora, aunque adquiere una leve tonalidad azul en grandes volúmenes, debido a la refracción de la luz al atravesarla, ya que absorbe con mayor facilidad las longitudes de onda larga (rojo, naranja y amarillo) que las longitudes de onda corta (azul, violeta), desviando levemente estas últimas, provocando que en grandes cantidades de agua esas ondas cortas se hagan apreciables.
Se considera fundamental para la existencia de la
vida. No se conoce ninguna forma de vida que tenga lugar en su ausencia completa.
Es el único compuesto que puede estar en los tres estados (sólido, líquido y gaseoso) a las temperaturas que se dan en la Tierra. Se halla en forma líquida en los
mares, ríos, lagos y océanos; en forma sólida, nieve o hielo, en los casquetes polares, en las cumbres de las montañas y en los lugares de la Tierra donde la temperatura es inferior a cero grados Celsius; y en forma gaseosa se encuentra formando parte de la atmósfera terrestre como vapor de agua.
Es el compuesto con el
calor latente de vaporización más alto, 540 cal/g (2,26 kJ/g) y con el calor específico más alto después del litio, 1 cal/g (4,18 J/g).

Agua en la Tierra

Origen del agua
Los científicos piensan que los constituyentes químicos del agua (
oxígeno e hidrógeno) deben haber existido en la nube primitiva que dio origen a nuestro Sistema Solar, hace alrededor de 4.500 millones de años.
El entonces joven
Sistema Solar estaba lleno de escombros y, cuando muchos de estos trozos de material planetario chocaron contra nuestro planeta, pudieron iniciar un proceso en el cual el hidrógeno y el oxígeno congelados se vaporizaron, liberándose así en la atmósfera terrestre.
Una vez que ambos elementos estuvieron presentes en la
Tierra, lo demás tuvo que ser simple. El hidrógeno es un elemento fácilmente inflamable y, cuando se quema en presencia del oxígeno, se une con este último elemento. Cuando el oxígeno y el hidrógeno se combinan en proporciones adecuadas (para ser exactos, un átomo de oxígeno por cada dos de hidrógeno) entonces lo que resulta es vapor de agua.
Actualmente existe cierta evidencia que respalda a esta teoría. Se sabe que las rocas del manto terrestre contienen agua en una buena proporción. En la superficie de nuestro planeta, las emisiones volcánicas contienen una gran cantidad de vapor de agua. Algunos científicos afirman que esta adición de agua a la atmósfera terrestre puede aún llegar a ser mayor, en la medida que los
volcanes liberen más vapor de agua en el aire.
La teoría anterior es muy aceptada y ha sido ampliamente investigada. Pero existe otra, más reciente, que sugiere que una buena parte del agua terrestre pudo haber sido traída por los
cometas que fueron capturados por la gravedad terrestre, y que terminaron por impactarse contra nuestro planeta.
Es un hecho comprobado que, durante toda su historia, el planeta en el cual vivimos ha sufrido colisiones de
meteoritos en repetidas ocasiones. Los meteoritos, debido a la gran cantidad de energía de movimiento que poseen, se vaporizan completamente al impacto; de esta manera, pudieron inyectar hidrógeno y oxígeno a la atmósfera terrestre.
Según cálculos recientes, no serían necesarios muchos meteoritos para justificar la cantidad de agua que posee nuestro planeta.
Como ha ocurrido en muchas ocasiones a lo largo de la historia de la
ciencia, el origen verdadero del agua en la Tierra probablemente tenga que ver con ambas ideas. Como los procesos ya referidos no se excluyen mutuamente, los dos pueden ser responsables del agua que existe actualmente en nuestro planeta.

Fuente de agua.
La Tierra fue un lugar extremadamente caliente, de manera que su atmósfera pudo contener una cantidad mayor de vapor de agua. Pero eventualmente nuestro planeta se fue enfriando y el vapor comenzó a condensarse. Fue así como la Tierra experimentó la
tormenta más intensa de su historia. Desde entonces, el agua que posee nuestro planeta ha sido la misma, y se ha ciclado de la tierra al aire y viceversa una y otra vez durante más de 3.000 millones de años.El agua en la vida diaria []

Una gota de agua en un grifo, ejemplo de uso de agua en la vida diaria

Agua utilizada en una fuente
Todas las formas de vida conocidas dependen del agua. El agua es parte vital de muchos procesos metabólicos en el cuerpo. Cantidades significantes de agua son usadas durante la
digestión de la comida. Sin embargo, algunas bacterias y semillas de plantas pueden entrar a un estado criptobiótico por un período de tiempo indefinido cuando se deshidratan, y vuelven a la vida cuando se devuelven a un ambiente húmedo.
Cerca del 72% de la masa libre de grasa del
cuerpo humano está hecha de agua. Para su adecuado funcionamiento nuestro cuerpo requiere entre uno y tres litros de agua diarios para evitar la deshidratación, la cantidad precisa depende del nivel de actividad, temperatura, humedad y otros factores. El cuerpo pierde agua por medio de la orina y las heces, la transpiración y la exhalación del vapor de agua en nuestro aliento.
Los humanos requieren agua pobre en
sales y otras impurezas. Entre las impurezas también se cuentan sustancias químicas o, en otro sentido, microorganismos perjudiciales. Algunos solutos son aceptables y hasta deseables para un sabor apropiado. El agua adecuada para beber se llama agua potable.

TAREA bioquimica

Bioquímicala
enciclopedia libreSaltar a navegación, búsquedaLa bioquímica es la ciencia que estudia los componentes químicos de los seres vivos, especialmente las proteínas, carbohidratos, lípidos y ácidos nucleicos, además de otras pequeñas moléculas presentes en las células. La bioquímica se basa en el concepto de que todo ser vivo contiene carbono y en general las moléculas biológicas están compuestas principalmente de carbono, hidrógeno, oxígeno, nitrógeno, fósforo y azufre. Es la Ciencia que estudia la mismísima base de la vida: las moléculas que componen las células y los tejidos, que catalizan las reacciones químicas de la digestión, la fotosíntesis y la inmunidad, entre otras.Biología celular: Es una área de la Biología que se dedica al estudio de la célula, su comportamiento, la comunicación entre orgánulos al interior de la célula y la comunicación entre células. Genética: Es un área de la biología dónde se estudia principalmente el ADN y ARN, para entender la función de cada una de sus partes y los procesos asociados a su conservación. Inmunología: Área de la biología, la cual se interesa por la reacción del organismo frente a organismos como las bacterias y virus. Todo esto tomando en cuenta la reacción y funcionamiento del sistema inmune de los seres vivos. Farmacología: Área de la química que estudia cómo afectan ciertas sustancias al funcionamiento celular en el organismo.

martes, 10 de febrero de 2009

mys cars


solo de vk